Antimicrobial peptides at work: interaction of myxinidin and its mutant WMR with lipid bilayers mimicking the P. aeruginosa and E. coli membranes

نویسندگان

  • Lucia Lombardi
  • Marco Ignazio Stellato
  • Rosario Oliva
  • Annarita Falanga
  • Massimiliano Galdiero
  • Luigi Petraccone
  • Geradino D’Errico
  • Augusta De Santis
  • Stefania Galdiero
  • Pompea Del Vecchio
چکیده

Antimicrobial peptides are promising candidates as future therapeutics in order to face the problem of antibiotic resistance caused by pathogenic bacteria. Myxinidin is a peptide derived from the hagfish mucus displaying activity against a broad range of bacteria. We have focused our studies on the physico-chemical characterization of the interaction of myxinidin and its mutant WMR, which contains a tryptophan residue at the N-terminus and four additional positive charges, with two model biological membranes (DOPE/DOPG 80/20 and DOPE/DOPG/CL 65/23/12), mimicking respectively Escherichia coli and Pseudomonas aeruginosa membrane bilayers. All our results have coherently shown that, although both myxinidin and WMR interact with the two membranes, their effect on membrane microstructure and stability are different. We further have shown that the presence of cardiolipin plays a key role in the WMR-membrane interaction. Particularly, WMR drastically perturbs the DOPE/DOPG/CL membrane stability inducing a segregation of anionic lipids. On the contrary, myxinidin is not able to significantly perturb the DOPE/DOPG/CL bilayer whereas interacts better with the DOPE/DOPG bilayer causing a significant perturbing effect of the lipid acyl chains. These findings are fully consistent with the reported greater antimicrobial activity of WMR against P. aeruginosa compared with myxinidin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli.

Antimicrobial cationic peptides are prevalent throughout nature as part of the intrinsic defenses of most organisms, and have been proposed as a blueprint for the design of novel antimicrobial agents. They are known to interact with membranes, and it has been frequently proposed that this represents their antibacterial target. To see if this was a general mechanism of action, we studied the int...

متن کامل

Comparison of Antimicrobial Properties and Toxicity of Natural S3 Peptide with Horseshoe Crab Amoebocyte Origin and its Mutants

Introduction: Antimicrobial peptides (AMPs) are compounds with antimicrobial properties that are studied widely due to the development of resistance of pathogenic bacteria to antibiotics. In the present study, the toxicity and antimicrobial effects of two natural monomeric peptides (S3 and S∆3) were compared with S3-S∆3 hybrids and S3 tetramers. Material & Methods: Protein hybrids (S∆3S3-2mer-G...

متن کامل

Dependence of antimicrobial selectivity and potency on oligomer structure investigated using substrate supported lipid bilayers and sum frequency generation vibrational spectroscopy.

Sum frequency generation (SFG) vibrational spectroscopy was used to study interactions between solid-supported lipid bilayers mimicking microbial and erythrocyte cellular membranes and synthetic antimicrobial arylamide oligomers named 2, 3, and 4, designed with the facial amphiphilicity common to naturally occurring antimicrobial peptides. The three compounds have the same backbone structure bu...

متن کامل

Interaction of cationic antimicrobial peptides with model membranes.

A series of natural and synthetic cationic antimicrobial peptides from various structural classes, including alpha-helical, beta-sheet, extended, and cyclic, were examined for their ability to interact with model membranes, assessing penetration of phospholipid monolayers and induction of lipid flip-flop, membrane leakiness, and peptide translocation across the bilayer of large unilamellar lipo...

متن کامل

A Peptide Derived from Phage Display Library Exhibits Antibacterial Activity against E. coli and Pseudomonas aeruginosa

Emergence of drug resistant strains to currently available antibiotics has resulted in the quest for novel antimicrobial agents. Antimicrobial peptides (AMPs) are receiving attention as alternatives to antibiotics. In this study, we used phage-display random peptide library to identify peptides binding to the cell surface of E. coli. The peptide with sequence RLLFRKIRRLKR (EC5) bound to the cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017